Honor’s only courses: The Department of Physics has one sequence of courses designated for BHC students, PHY 121H/131H; but these courses are usually not recommended for physics majors. The PHY121H/131H sequence is for BHC students with a wide spectrum of interests, including chemistry, life sciences, and engineering. Most physics majors should take the PHY150/151 sequence instead. Because this sequence is for physics majors only, the chosen topics and the depth of coverage are tailored towards those who plan careers in physics. The relatively small number of BHC physics majors each year does not justify offering separate honors sections for the PHY150/151 sequence. Nevertheless, BHC students can receive honors credit in PHY150 and/or PHY151 via the Honor’s Enrichment Contract.

Honor’s Enrichment Contracts: Most faculty members in the Department of Physics are enthusiastic about directing Honor’s Enrichment Contracts for BHC students. These contracts will often involve additional projects, which are to be completed during the semester with the guidance of the faculty member. Most faculty also welcome input from the students on how they could further explore the ideas presented in the class. Any interested student should contact the professor as soon as possible at the start of the semester.

Honors credit for key physics classes: Two of the core courses in the physics-majors’ curriculum have been designated to receive honors credit. BHC students who successfully complete PHY 201 (Mathematical Methods in Physics I) and PHY 333 (Electronic Circuits and Measurements I) will receive honors credit for these classes. In other words, 3 hours of lower-division honors credit, and 3 hours of upper-division honors credit are available from the standard sequence of classes taken by physics majors.
Faculty research interests in the Department of Physics.

Ricardo Alarcon
PSF-433B 965-8549 ricardo.alarcon@asu.edu
Experimental nuclear and particle physics

Matthew Baumgart
GWC-576 278-0192 matt.baumgart@asu.edu
High-energy theory; particle physics, cosmology, and gravity

Oliver Beckstein
PSF-348 727-9765 obeckste@asu.edu
Computational Biophysics

Andrei Belitsky
GWC-528 965-2218 andrei.belitsky@asu.edu
High energy theory

Peter Bennett
PSF-338 965-9623 peter.bennett@asu.edu
Experimental surface science

Ralph Chamberlin
PSC-153 965-3922 ralph.chamberlin@asu.edu
Nanoscience and materials

Robert Culbertson
PSF-232 965-0945 robert.culbertson@asu.edu
Experimental solid state physics; physics education

Paul Davies
PSH-551 965-3240 paul.davies@asu.edu
Astrophysics and cosmology, Beyond Center

Jeff Drucker
PSF-342 965-9658 jeff.drucker@asu.edu
Condensed matter experimental

Damien Easson
GWC-522 965-0860 easson@asu.edu
Particle cosmology

Onur Erten
PSF-326 965-3758 oerten@asu.edu
Theory of strongly correlated electron systems, quantum magnetism, and superconductivity

William Graves
PSB-249 727-3441 wsg@asu.edu
Accelerator physics and free-electron lasers

Rizal Hariadi
BDA-120C 727-0064 rhariadi@asu.edu
Experimental biophysics, DNA nanotechnology

Robert Kaindl
CXFEL 727-1386 kaindl@asu.edu
Ultrafast phenomena in condensed matter physics

Siddarth Karkare
PSF-240 965-2552 karkare@asu.edu
Free-electron laser science: interface between accelerator physics and nanoscience

Cynthia Keeler
GWC-568 965-4985 ckeeler1@asu.edu
Holographic gauge-gravity dualities, mapping strongly-coupled theories to weakly-coupled

Richard Kirian
PSF-250 727-6456 rkirian@asu.edu
Free-electron laser science

Richard Lebed
PSF-433 965-6271 richard.lebed@asu.edu
Theoretical elementary particle physics

Stuart Lindsay
BA120E 965-4691 stuart.lindsay@asu.edu
Biophysics and scanning probe microscopy

Jimmy Liu
PSF-432A 965-9731 jingyue.liu@asu.edu
Nanoscience and Material Physics

Cecilia Lunardini
GWC-524 727-0586 cecilia.lunardini@asu.edu
Astroparticle physics, neutrino astrophysics

Dmitry Matyushov
PSF-348 965-0057 dmitrym@asu.edu
Electron transport

Phil Mauskopf
GWC-582 965-3267 philip.mauskopf@asu.edu
Experimental astrophysics

Molly McCartney
PSB-347 965-4558 martha.mccartney@asu.edu
Electron microscopy
Jose Menendez PSF-329 965-4817 jose.mendez@asu.edu
Experimental solid state physics

Robert Nemanich PSB-353 965-6794 robert.nemanich@asu.edu
Experimental surface science

Banu Ozkan PSF-354 965-7954 banu.ozkan@asu.edu
Protein assembly and folding

Maulik Parikh GWC-518 727-8081 maulik.parikh@asu.edu
Theoretical high-energy physics, gravity

Xihong Peng Waner 340N 727-5013 xihong.peng@asu.edu
Electronic structure calculations for nanoelectronics and renewable energy

Fernando Ponce PSF-334 965-5557 ponce@asu.edu
Materials physics

Steve Presse PSF-350 965-9535 spresse@asu.edu
Statistical physics

Quan Qing PSF-433A 965-9261 quan.qing@asu.edu
Biological and soft matter physics, nanoscience, bioengineering, nanoscience and material physics

Peter Rez PSF-325 065-6449 peter.rez@asu.edu
Electron microscopy and theoretical solid state physics

Barry Ritchie PSF-456 965-4707 barry.ritchie@asu.edu
Subatomic physics

Robert Ros PSB-359 727-9280 robert.ros@asu.edu
Nanobiophysics

Antia Sanchez Botana PSF-334 965-8240 antia.sanchez.botana@asu.edu
Density functional theory; computational design of materials

Kevin Schmidt PSF-334 965-8240 kevin.schmidt@asu.edu
Theoretical condensed matter physics

Douglas Shepherd
Quantitative imaging and interference

Igor Shovkovy Waner 340L 727-1953 igor.shovkovy@asu.edu
Theoretical nuclear physics, high-energy physics, and condensed matter physics

Arunima Singh PSF-340 965-6073 arunimasingh@asu.edu
Materials synthesis and application using first-principles computation

David Smith PSB-343 965-4540 david.smith@asu.edu
Electron microscopy and materials physics

John Spence PSB-349 965-6486 john.spence@asu.edu
Electron microscopy and solid state physics

Maxim Sukharev Waner 340M 727-1398 maxim.sukharev@asu.edu
Computational nano-optics; coherent control of light and matter

Samuel Teitelbaum CXFEL 727-2772 samuelT@asu.edu
Fast spectroscopy of energy exchange between degrees of freedom in crystals

Mike Treacy PSB-147 965-5359 treacy@asu.edu
Diffraction physics and complex materials

Frank Tsen PSF-340 965-5206 kong-tho.tsen@asu.edu
Experimental solid state physics

Sara Vaiana PSF-346 965-7373 sara.vaiana@asu.edu
Biological and condensed matter physics

Tanmay Vachaspati 965-3587 tvachasp@asu.edu
Cosmology, gravitation, particle physics

Frank Wilczek 965-7381 frank.wilczek@asu.edu
Theoretical particle physics, color perception
Senior honors projects in physics

There is a wide range of exciting and fundamental research pursued by the faculty in the Department of Physics. The physics faculty are delighted to work with honors students on their senior research projects. Physics honors projects usually involve significant original research. Thus, it is important that physics honors students choose a thesis director early in their junior year, and that they progress steadily towards a timely completion of the project. The written thesis can be short, but the content should be of sufficient quality for publication in a research journal.

Suggested Timeline

Junior Year: Fall semester
1) Choose a thesis director.
2) Agree on a thesis topic with your director.
3) Read background information on your chosen topic.
4) Meet with your director often, once a week if possible, to ensure that you are on track.

Junior Year: Spring semester
1) Start original research.
2) Continue reading background information and recent articles on your thesis topic.
3) Meet with your director often, once a week if possible, to ensure that you are on track.

Junior-Senior Year: Summer
The bulk of the research should be accomplished during the summer between junior and senior years. This is when you, and your thesis director, are likely to have the most time to work on the project.

Senior Year: Fall semester
1) Finish research.
2) Start writing the thesis
3) Continue reading background information and recent articles on your thesis topic.
4) Meet with your director often, once a week if possible, to ensure that you are on track.

Senior Year: Spring semester
1) Finish writing the thesis early in the spring semester.
2) Meet with your director often. Expect several changes to the thesis.
3) Provide copies of your thesis to the readers four weeks before the defense.
4) Prepare and practice your defense well in advance.
Honors physics courses for physics majors

All physics majors are encouraged to take the introductory physics sequence for physics majors, PHY150 and PHY151. Honors credit can be earned in these classes via footnote 18 projects. Although equivalent credit can be obtained from the general science and engineering sequence, including the honors sections PHY121H and PHY131H, the PHY150/151 courses are specially designed for physics majors, thus providing a stronger foundation for future studies in physics. Furthermore, the PHY150/151 sequence is generally limited to less than 30 students, providing a more personalized and interactive environment.

Three hours of lower division honors credit are automatically earned by honors students who complete the first semester of Mathematical Methods of Physics (PHY201). Similarly, three hours of upper division honors credit are earned by honors students who complete the upper division electronics laboratory (PHY333).

Honors credit may also be available in other physics courses via the footnote 18 option. Students should discuss this option with the instructor for the course. In any case, all physics classes for physics majors are limited to 30 students or less, so the atmosphere is usually informal and interactive. Connecting with the outstanding faculty who are chosen to teach the physics-majors courses enhances the undergraduate experience, and increases the opportunities for research in the department, giving you a head start for your senior honors project and your career.